M. Sc. (Electronics) (Sem. V) (CBCS) Examination November – 2019

Paper - 17: Basic Concepts of Control Systems

Faculty Code: 003 Subject Code: 1275001

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

- 1 Answer the following questions in brief: (any seven) 14
 - 1. What is an open loop control system?
 - 2. Define state space equation.
 - 3. Describe PID (Proportional-Integral-Derivative) control mode in brief.
 - 4. Briefly describe properties of linear time-invariant system.
 - 5. Define Laplace transform.
 - 6. Reduce the block-diagram to minimum:

7. For a given function, $F(s) = \frac{1}{s(s+1)}$, find its final value

at,
$$\lim_{t\to\infty} f(t)$$
.

- 8. How can one define a linear time-varying system?
- 9. Find inverse Laplace of the function given as:

$$F(s) = \frac{s^4 + 5}{s(s+1)}.$$

10. What is a transfer function?

- 2 Attempt any two of the following questions:
 - 1. Derive mathematical model representing satellite attitude control system as shown in figure below.

- 2. Mention and explain all rules to manipulate block-diagrams.
- 3. Derive the step, ramp and unit pulse response of first order system.
- **3** Answer the following questions:
 - 1. Reduce the following block diagram to minimum.

2. Obtain the transfer function of the mechanical system shown in figure.

14

5

5

3. State and prove the real integration theorem.

i dieorem.

3 Answer the following questions:

1. Obtain the transfer function E,(s)/E,(s) of the electrical 5 circuit shown in figure

OR

- 2. Define delay time, rise time, peak time, maximum overshoot and settling time for a transient response with necessary diagram.
- 3. Reduce the block diagram to minimum.

- 4 Answer the following questions:
 - 1. Derive state space representation for the system in the block diagram.

2. For the system shown in figure, determine the values of K and velocity feedback constant K_h , so that maximum overshoot in unit-step response is 0.2 and peak time is 1 sec. For the same K and K_h ; determine rise time and settling time. (J=1 kgm² and B=1 Nm/rad/sec)

4

- 3. State and prove the real differentiation and final value theorems.
- 5 Answer any two of the following questions: 14
 - 1. Describe the state space representation of a dynamic system.
 - 2. Derive the transient response of a second order system for unit step input.
 - 3. Consider the liquid-level system shown in figure below. In the system, Q_1 and Q_2 are steady-state inflow rates and H_1 and H_2 are steady-state heads. The quantities q_{i1} , q_{i2} , h_1 , h_2 , q_1 , and q_0 are considered small. Obtain a state-space representation for the system when h_1 and h_2 are the outputs and q_{i1} , and q_{i2} are the inputs.

4. What will be effect of multiplication by e^{-at} and change of time scale on Laplace transform of a function, f (t). Also find inverse Laplace transform of,

$$F(s) = \frac{5(s+7)}{(s+1)^2 (s+2)}.$$